
DATA STRUCTURE USING C (BCA-204) BCA SEM II

 UNIT I

LECTURE NOTES

PROGRAMME – BCA

SEMESTER- II

DATA STRUCTURE USING C (BCA-204)

UNIT I

DATA STRUCTURE USING C (BCA-204) BCA SEM II

 UNIT I

Data Structure

 Data Structure is representation of Data & operations allowed on the data.

 Data is represented by data values held temporarily within program data area

or recorded permanently on a file often the different values are related to each

other

Data Structure = Organised Data + Allowed Operations

 Or

Way of organizing and storing data in a computer system

This organization is done under a common name.

Depicts the logical representation of data in computer memory.

Types of Data Structure

Arrays

Collection of similar type data elements stored at consecutive locations in the memory.

Advantages

DATA STRUCTURE USING C (BCA-204) BCA SEM II

 UNIT I

● Individual data elements can be easily referred.

Limitations

● Wastage of memory space.

Linked Lists

To store data in the form of a list of nodes connected to each other through pointers.

 Each node has two parts – data and pointer to next data

Stacks

Advantages

● Optimize the use of storage space.

Limitations

● Individual elements cannot be referred directly

Maintains a list of elements in a manner that elements can be inserted or deleted only

from one end (referred as top of the stack) of the list.

LIFO-Last In First Out principle.

Applications

● Implementations of system processes like program control, recursion control

Queues

Maintains a list of elements such that insertion happens at rear end and deletion happens

at front end

 FIFO – First In First Out principle

DATA STRUCTURE USING C (BCA-204) BCA SEM II

 UNIT I

Trees

Represent data containing hierarchical relationship between elements. Example: family trees,

records and table of contents.

Applications

● Implementing search algorithms

Graphs

It is a linked data structure that comprises of vertices and a group of edges.

Edges are associated with certain values called weights.

Helps to compute the cost of traversing the graph through a certain path.

Abstract Data Types (ADTs) in C

C is not object-oriented, but we can still manage to inject some object-oriented principles

into the design of C code.

For example, a data structure and its operations can be packaged together into an entity
called an ADT.

 There’s a clean, simple interface between the ADT and the program(s) that use it.

The lower-level implementation details of the data structure are hidden from view of the
rest of the program.

DATA STRUCTURE USING C (BCA-204) BCA SEM II

 UNIT I

An abstract data type (ADT) is a set of operations and mathematical abstractions , which

can be viewed as how the set of operations is implemented. Objects like lists, sets and

graphs, along with their operation, can be viewed as abstract data types, just as integers,

real numbers and Booleans.

Features of ADT.

o Modularity

 Divide program into small functions

 Easy to debug and maintain

 Easy to modify

o Reuse

 Define some operations only once and reuse them in future

o Easy to change the implementation

List ADT

LIST:

A list is a sequential data structure, ie. a collection of items accessible one after another

beginning at the head and ending at the tail.

It is a widely used data structure for applications which do not need random access

Addition and removals can be made at any position in the list

lists are normally in the form of a1,a2,a3 an. The size of this list is n.The first element of

the list is a1,and the last element is an.The position of element ai in a list is i.

 List of size 0 is called as null list.

A list is a sequence of zero or more elements of a given type. The list is represented as

sequence of elements separated by comma.

A1,A2,A3…..AN

where N>0 and A is of type element.

Basic Operations on a List

Creating a list

Traversing the list

Inserting an item in the list

Deleting an item from the list

Concatenating two lists into one

1. Storing a list in a static data structure(Array List)

 This implementation stores the list in an array.

 The position of each element is given by an index from 0 to n-1, where n is the number of

elements.

 The element with the index can be accessed in constant time (ie) the time to access does

not depend on the size of the list.

 The time taken to add an element at the end of the list does not depend on the size of the

list. But the time taken to add an element at any other point in the list depends on the size

DATA STRUCTURE USING C (BCA-204) BCA SEM II

 UNIT I

of the list because the subsequent elements must be shifted to next index value.So the

additions near the start of the list take longer time than the additions near the middle or

end.

 Similarly when an element is removed,subsequent elements must be shifted to the

previous index value. So removals near the start of the list take longer time than removals

near the middle or end of the list.

Problems with Array implementation of lists:

 Insertion and deletion are expensive. For example, inserting at position 0 (a new first

element) requires first pushing the entire array down one spot to make room, whereas

deleting the first element requires shifting all the elements in the list up one, so the worst

case of these operations is O(n).

 Even if the array is dynamically allocated, an estimate of the maximum size of the list is

required. Usually this requires a high over-estimate, which wastes considerable space.

This could be a serious limitation, if there are many lists of unknown size.

 Simple arrays are generally not used to implement lists. Because the running time for

insertion and deletion is so slow and the list size must be known in advance

2. Storing a list in a dynamic data structure(Linked List)

 The Linked List is stored as a sequence of linked nodes which are not necessarily

adjacent in memory.

 Each node in a linked list contains data and a reference to the next node

 The list can grow and shrink in size during execution of a program.

 The list can be made just as long as required. It does not waste memory space because

successive elements are connected by pointers.

 The position of each element is given by an index from 0 to n-1, where n is the number of

elements.

 The time taken to access an element with an index depends on the index because each

element of the list must be traversed until the required index is found.

 The time taken to add an element at any point in the list does not depend on the size of

the list,as no shifts are required

 Additions and deletion near the end of the list take longer than additions near the middle

or start of the list. because the list must be traversed until the required index is found

Array versus Linked Lists

1.Arrays are suitable for

- Randomly accessing any element.

- Searching the list for a particular value
- Inserting or deleting an element at the end.

2. Linked lists are suitable for

-Inserting/Deleting an element.

-Applications where sequential access is required.
-In situations where the number of elements cannot be predicted beforehand.

DATA STRUCTURE USING C (BCA-204) BCA SEM II

 UNIT I

Array Based Implementation

Array is a collection of specific number of data stored in consecutive memory locations.

20 10 30 40 50 60

Operations on Array

 Insertion

 Deletion

 Merge

 Traversal

 Find

A[0] A[1] A[2] A[3] A[4] A[5]
Fig 3.3.1 Array model

Insertion Operation on Array

 It is the process of adding an element into the existing array. It can be done at any

position.

 Insertion at the end is easy as it is done by shifting one position towards right of last

element if it does not exceeds the array size

 Example

i) Insertion at the end:

20 10 30 40

A[0] A[1] A[2] A[3] A[4] A[5]

Insert (70,A)

20 10 30 40 70

A[0] A[1] A[2] A[3] A[4] A[5]

ii) Insertion at specified position

20 10 30

A[0] A[1] A[2] A[3] A[4] A[5]

Insert(40,1,A)

20 10 30

A[0] A[1] A[2] A[3] A[4] A[5]

First shift the last element one position right (from location 2 to 3)

A[0] A[1] A[2] A[3] A[4] A[5]

20 10 30

DATA STRUCTURE USING C (BCA-204) BCA SEM II

 UNIT I

Shift the element (10) one position right (from location 1 to 2)

20 10 30

A[0] A[1] A[2] A[3] A[4] A[5]

Now insert element (40) at location 1

20 40 10 30

A[0] A[1] A[2] A[3] A[4] A[5]

 Routine to insert an element in an array

void insert(int X, int P, int A[], int N)

{

if(P==N)

printf(“Array overflow”);

else

{

}

}

for(int i=N-1;i>=P;i--)

A[i+1]=A[i];

A[P]=X;

N=N+1;

Deletion operation on an Array

 It is the process of removing an element from the array at any position

 Routine

int deletion(int P,int A[],int N)

{

if(P==N-1)

temp=A[P];

else

{

}

temp=A[P];

for(i=P;i<N-1;i++)

A[i]=A[i+1];

N=N-1;

return temp;

}

DATA STRUCTURE USING C (BCA-204) BCA SEM II

 UNIT I

2 4 6

1 3 8

Merge Operation

 It is the process of combining two sorted array into single sorted array.

A[0] A[1] A[2] A[3] A[4] B[0] B[1] B[2] B[3] B[4]

1 2 3 4 6 8

C[0] C[1] C[2] C[3] C[4] C[5] C[6] C[7] C[8] C[9]

 Routine to merge two sorted array

void merge(int a[],int n, int b[],int m)

{

int c[n+m];

int i=j=k=0;

while(i<n&&j<m)

{

if(a[i]<b[j])

{

}

else

{

}

}

c[k] =a[i];

i++;

k++;

c[k]=b[j];

j++;

k++;

while(i<n)

{

c[k] =a[i];

i++;

k++;

}

while(j<m)

{

c[k] =a[i];

j++;

k++;

DATA STRUCTURE USING C (BCA-204) BCA SEM II

 UNIT I

}

}

Find operation

 It is the process of searching an element in the given array. If the element is found, it

returns the position of the search element otherwise NULL.

 Routine

int find(int x, int a[], int N)

{

int pos,flag=0;

for(int i=0;i<N;i++)

{

if(x==a[i])

{

flag=1;

pos=i;

break;

}

}

if(flag==1)

printf(“element %d is found at position %d”,x,pos);

else

printf(“Element not found”);

return pos;

}

Traversal operation

 It is the process of visiting the elements in an array.

 Routine

void traversal(int a[],int n)

{

for(int i=0;i<n;i++)

printf(a[i]);

}

Merits and demerits of array implementation of lists

Merits

Demerits

 Fast, random access of elements

 Memory efficient – very less amount of memory is required

EC8393/fundamentals of data structures in C UNIT III

Next Pointer Data element

Null

 Insertion and deletion operations are very slow since the elements should be

moved.

 Redundant memory space – difficult to estimate the size of array.

Linked List Implementation

Linked list consists of series of nodes. Each node contains the element and a pointer to its

successor node. The pointer of the last node points to the NULL.

Node

Types of linked list

1. Singly linked list

2. Doubly linked list

3. Circular linked list

Singly Linked Lists

A singly linked list is a linked list in which each node contains only one link field

pointing to the next node in the list.

Doubly Linked Lists

A doubly linked list is a linked list in which each node has three fields namely data field,

forward link(FLINK) and Backward Link(BLINK). FLINK points to the successor node in the

list whereas BLINK points to the predecessor node.

Circular Linked List

In circular linked list the pointer of the last node points to the first node. It can be

implemented as

o Singly linked circular list

o Doubly linked circular list

Singly Linked Lists

A singly linked list is a linked list in which each node contains only one link field

pointing to the next node in the list.

550 700 1000 800

700 1000 800

40 30 20 10

Header L

Sri vidya college of engineering and technology course material

EC8393/fundamentals of data structures in C UNIT III

700 1200 800

550 700 1000
1000

25

40 30 20 10

Header L

Declaration for Linked List

struct node;

typedef struct node *List;

typedef struct node *Position;

int isLast(List L);

int isEmpty(List L);

Position Find(int X,List L);

void Delete(int X, List L);

Position FindPrevious(int X,List L);

Position FindNext(int X,List L);

void insert(int X,List L, Position P);

void DeleteList(List L);

struct node

{

int Element;

Position Next;

};

Routine to insert an element in the List

void Insert(int X,List L, Position P)

{

Position Newnode;

Newnode=malloc(sizeof(struct node));

if(Newnode!=NULL)

{

Newnode→Element=X;

Newnode→Next=P→Next;

P→Next=Newnode;

}

}

Example : Insert(25,L,P)

550

800

1200

Null

Sri vidya college of engineering and technology course material

EC8393/fundamentals of data structures in C UNIT III

Routine to check whether the list is empty

int isEmpty(List L) /* returns 1 if L is empty */

{

if(L→Next==NULL)

return 1;

}

Routine to Check whether the current position is Last

int isLast(Position P,List L)

{

if(P→Next==NULL)

return 1;

}

Find Routine

Position Find(int X,List L)

{

Position P;

P=L→Next;

While(P!=NULL && P→Element!=X)

P= P→Next;

return P;

}

FindPrevious Routine

Position FindPrevious(int X,List L)

{

Position P;

P=L;

While(P→Next!=NULL && P→Next

→Element!=X) P= P→Next;

return P;

}

FindNext Routine

Position FindNext(int X,List L)

{

Position P;

P=L→Next;

While(P→Next!=NULL && P→Element!=X)

P= P→Next;

return P→Next;

}

Sri vidya college of engineering and technology course material

EC8393/fundamentals of data structures in C UNIT III

Routine to delete an element from the list

void Deletion(int X,List L)

{

Position P,Temp;

P=FindPrevious(X,L);

if(isLast(P,L)

{

Temp= P→Next;

P→Next= Temp→Next;

Free(Temp);

}

}

Routine to delete the list

void DeleteList(List L)

{

Position P,Temp;

P=L→Next;

L→Next=NULL;

while(P!=NULL)

{

Temp=P;

P=P→Next;

Free(Temp);

}

}

Doubly Linked Lists

A doubly linked list is a linked list in which each node has three fields namely data field,

forward link(FLINK) and Backward Link(BLINK). FLINK points to the successor node in the

list whereas BLINK points to the predecessor node.

BLINK Data Element FLINK

Node in Doubly Linked List

Structure Declaration

struct node

{

int Element;

struct node *FLINK;

struct node *BLINK;

};

Sri vidya college of engineering and technology course material

EC8393/fundamentals of data structures in C UNIT III

Routine to insert an element in a doubly linked list

void Insert(int X, List L, Position P)

{

struct node *Newnode;

Newnode=malloc(sizeof(struct node));

if(Newnode!=NULL)

{

Newnode→Element = X;

Newnode→Flink = P→Flink;

P→Flink→Blink = Newnode;

P→Flink = Newnode;

Newnode →Blink=P;

}

}

Routine to delete an element in a doubly linked list

void Deletion(int X,List L)

{

Position P;

if(Find(X,L)

{

}

else

{

}

}

Temp=P;

P→Flink→Blink = NULL;

Free(Temp);

Temp=P;

P →Blink→Flink = P→Flink ;

P→Flink→Blink = P →Blink;

Free(Temp);

Sri vidya college of engineering and technology course material

EC8393/fundamentals of data structures in C UNIT III

Advantages

 Deletion operation is easier

 Finding the predecessor and successor of a node is easier.

Disadvantages

 More memory space is required since it has two pointers.

Singly Linked Circular Lists

Circular Linked List

In circular linked list the pointer of the last node points to the first node. It can be

implemented as

o Singly linked circular list

o Doubly linked circular list

Singly linked circular list

Structure Declaration

struct node

{

int Element;

struct node *Next;

};

Routine to insert an element in the beginning

void Insert_beg(int X, List L)

{

struct node *Newnode;

Newnode=malloc(sizeof(struct node));

if(Newnode !=NULL)

{

Newnode→Element=x;

Newnode→Next=L→Next;

L→Next= Newnode;

}

}

Routine to insert an element in the middle

void Insert_mid(int X, List L,Position P)

{

struct node *Newnode;

Newnode=malloc(sizeof(struct node));

if(Newnode !=NULL)

{

Sri vidya college of engineering and technology course material

EC8393/fundamentals of data structures in C UNIT III

Newnode→Element=x;

Newnode→Next=P→Next;

P→Next= Newnode;

}

}

Routine to insert an element in the last

void Insert_last(int X, List L)

{

struct node *Newnode;

Newnode=malloc(sizeof(struct node));

if(Newnode !=NULL)

{

P=L;

while(P→Next!=L)

P=P→Next;

Newnode→Element=x;

P→Next= Newnode;

Newnode→Next=L;

}

}

Routine to delete an element from the beginning

void dele_First(List L)

{

Position Temp;

Temp= L→Next;

L→Next= Temp→Next;

free(Temp);

}

Routine to delete an element from the middle

void dele_mid(int X,List L)

{

Position P,Temp;

P=FindPrevious(X,L);

if(!isLast(P,L))

{

Temp= P→Next;

P→Next= Temp→Next;

free(Temp);

}

}

DATA STRUCTURE USING C BCA SEM II

 UNIT I

Routine to delete an element in the last

void dele_last(int X, List L)

{

Position P,Temp;

P=L;

while(P→Next→Next!=L)

P=P→Next;

Temp=P→Next;

P→Next= L;

Free(Temp);

}

Doubly Linked Circular Lists

A doubly linked circular list is a doubly linked list in which the forward link of the last

node points to the first node and backward link of the first node points to the last node of the list.

Structure Declaration

struct node

{

int Element;

struct node *FLINK;

struct node *BLINK;

};

Routine to insert an element at the beginning

void Insert_beg(int X, List L)

{

Position Newnode;

Newnode=malloc(sizeof(struct node));

if(Newnode!=NULL)

{

Newnode→Element = X;

DATA STRUCTURE USING C BCA SEM II

 UNIT I

Newnode→Flink = L→Flink;

L→Flink→Blink = Newnode;

L→Flink = Newnode;

Newnode →Blink=L;

}

}

Routine to insert an element in the middle

void Insert_mid(int X, List L,Position P)

{

Position Newnode;

Newnode=malloc(sizeof(struct node));

if(Newnode!=NULL)

{

Newnode→Element = X;

Newnode→Flink = P→Flink;

P→Flink→Blink = Newnode;

P→Flink = Newnode;

Newnode →Blink=P;

}

}

Routine to insert an element at the last

void Insert_last(int X, List L)

{

Position Newnode,P;

Newnode=malloc(sizeof(struct node));

if(Newnode!=NULL)

{

P=L;

While(P→Flink!=NULL)

P= P→Flink;

Newnode→Element = X;

P→Flink = Newnode;

Newnode→Flink = L;

Newnode →Blink=P;

L→Blink = Newnode;

}

}

Routine to delete an element from the beginning

void dele_first(List L)

DATA STRUCTURE USING C BCA SEM II

 UNIT I

{

Position Temp;

if(L→Flink! = NULL)

{

Temp= L→Flink ;

L→Flink = Temp→Flink;

Temp→Flink→Blink = L;

free(Temp);

}

}

Routine to delete an element from the middle

void dele_mid(int X,List L)

{

Position P,Temp;

P=FindPrevious(X);

if(!isLast(P,L)

{

Temp= P→Flink ;

P→Flink = Temp→Flink;

Temp→Flink→Blink = P;

free(Temp);

}

}

Routine to delete an element from the last

void dele_last(List L)

{

Position Temp;

P=L;

While(P→Flink!= L)

P= P→Flink;

Temp= P;

P→Blink →Flink = L;

L→Blink = P→Blink;

free(Temp);

}

DATA STRUCTURE USING C BCA SEM II

 UNIT I

Polynomial Manipulation – Insertion, Deletion

Representing a polynomial using a linked list:

A polynomial can be represented in an array or in a linked list by simply storing the

coefficient and exponent of each term. However, for any polynomial operation , such as addition

or multiplication of polynomials , you will find that the linked list representation is more easier

to deal with. First of all note that in a polynomial all the terms may not be present, especially if it

is going to be a very high order polynomial.

Consider,

5 x

12
 + 2 x

9
 + 4x

7
 + 6x

5
 + x

2
 + 12 x

Now this 12th order polynomial does not have all the 13 terms (including the constant term).

It would be very easy to represent the polynomial using a linked list structure, where each node

can hold information pertaining to a single term of the polynomial.

Each node will need to store

the variable x,

the exponent and

the coefficient for each term.

It often does not matter whether the polynomial is in x or y. This information may not be very

crucial for the intended operations on the polynomial. Thus we need to define a node structure to

hold two integers , viz. exp and coff.

Compare this representation with storing the same polynomial using an array structure. In the

array we have to have keep a slot for each exponent of x, thus if we have a polynomial of order

50 but containing just 6 terms, then a large number of entries will be zero in the array. You will

also see that it would be also easy to manipulate a pair of polynomials if they are represented

using linked lists.

Addition of two polynomials:

Consider addition of the following polynomials

5 x
12

 + 2 x
9
 + 4x

7
 + 6x

6
 + x

3

7 x
8
 + 2 x

7
 + 8x

6
 + 6x

4
 + 2x

2
 + 3 x + 40

The resulting polynomial is going to be

5 x
12

 + 2 x
9
 + 7 x

8
 + 6 x

7
 + 14x

6
+ 6x

4
 +x

3
 + 2x

2
 + 3 x + 40

Now notice how the addition was carried out. Let us say the result of addition is going to be

DATA STRUCTURE USING C BCA SEM II

 UNIT I

stored in a third list. We started with the highest power in any polynomial. If there was no item

having same exponent , we simply appended the term to the new list, and continued with the

process. Wherever we found that the exponents were matching, we simply added the coefficients

and then stored the term in the new list.

If one list gets exhausted earlier and the other list still contains some lower order terms, then

simply append the remaining terms to the new list. Now we are in a position to write our

algorithm for adding two polynomials. Let phead1 , phead2 and phead3 represent the pointers of

the three lists under consideration. Let each node contain two integers exp and coff .

Let us assume that the two linked lists already contain relevant data about the two polynomials.

Also assume that we have got a function append to insert a new node at the end of the given

list.p1 = phead1;

p2 = phead2;

Let us call malloc to create a new node p3 to build the third list

p3 = phead3;

/* now traverse the lists till one list gets exhausted */

while ((p1 != NULL) || (p2 != NULL))

{

/ * if the exponent of p1 is higher than that of p2 then the next term in final list is going to be the

node of p1* /

while (p1 ->exp > p2 -> exp)

{

p3 -> exp = p1 -> exp;

p3 -> coff = p1 -> coff ;

append (p3, phead3);

/* now move to the next term in list 1*/

p1 = p1 -> next;

}

/ * if p2 exponent turns out to be higher then make p3 same as p2 and append to final list*/

while (p1 ->exp < p2 -> exp)

{

p3 -> exp = p2 -> exp;

p3 -> coff = p2 -> coff ;

append (p3, phead3);

p2 = p2 -> next;

}

/* now consider the possibility that both exponents are same , then we must add the coefficients

to get the term for the final list */

while (p1 ->exp = p2 -> exp)

{

DATA STRUCTURE USING C BCA SEM II

 UNIT I

p3-> exp = p1-> exp;

p3->coff = p1->coff + p2-> coff ;

append (p3, phead3) ;

p1 = p1->next ;

p2 = p2->next ;

}

}

/* now consider the possibility that list2 gets exhausted , and there are terms remaining only in

list1. So all those terms have to be appended to end of list3. However, you do not have to do it

term by term, as p1 is already pointing to remaining terms, so simply append the pointer p1 to

phead3 */

if (p1 != NULL) append (p1, phead3) ;

else

append (p2, phead3);

Now, you can implement the algorithm in C, and maybe make it more efficient

